Global analytic expansion of solution for a class of linear parabolic systems with coupling of first order derivative terms

نویسنده

  • Jörg Kampen
چکیده

We derive global analytic representations of fundamental solutions for a class of linear parabolic systems with full coupling of first order derivative terms where coefficients may depend on space and time. Pointwise convergence of the global analytic expansion is proved. This leads to analytic representations of solutions of initial-boundary problems of first and second type in terms of convolution integrals or convolution integrals and linear integral equations. The results have both analytical and numerical impact. Analytically, our representations of fundamental solutions of coupled parabolic systems may be used to define generalized stochastic processes. Moreover, some classical analytical results based on a priori estimates of elliptic equations are a simple corollary of our main result. Numerically, accurate, stable and efficient schemes for computation and error estimates in strong norms can be obtained for a considerable class of Cauchyand initialboundary problems of parabolic type. Important instances of application are representations of solutions of multidimensional Burgers equations with forcing and potential initial conditions and Pauli equation describing the non-relativistic limit of Dirac theory for electrons in a magnetic field. 2000 Mathematics Subject Classification. 35K40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global analytic expansion of solution for a class of linear parabolic systems with coupling of first order derivatives terms

We derive global analytic representations of fundamental solutions for a class of linear parabolic systems with full coupling of first order derivative terms where coefficients may depend on space and time. Pointwise convergence of the global analytic expansion is proved. This leads to analytic representations of solutions of initial-boundary problems of first and second type in terms of convol...

متن کامل

New Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation

This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...

متن کامل

A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS

Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...

متن کامل

An Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients

In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...

متن کامل

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009